
D-Ai27 372 FUNCTIONAL SEMANTICS(U) MARYLAND UNIV COLLEGE PARK DEPT 1/1
OF COMPUTER SCIENCE R HAMLET ET AL. 1982
RFOSR-TR-83-8385 F49628-88-C-088i

UNCLASSIFIED F/G 9/2 NLEhhh/h/hhhhIE
I- END,

*EEEEEEEL/I
I

i . . -. -. • o . •• * 6t? .%

111.0 miIM WlIIIII~ E--- "" j
L6

ll,, l.

1111.25 14 16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOAROS-1963-A

, li --. . " '.'',,''.' " , ." ". ' • .--. . . . "
p ,% , °. % , , . •%. ,- % % % %. o - -. '% " % . . ' - ..•o-.* .-.** , .•.•.-.

, JAFOSR-TR. 83-0305

I i Functional Semantics

C".). Richard ialt

Harlan Mills

Department of Computer Science

University ot Maryland
" 'Ot 'College Park 2174-2

.. ,COMPUTER SCIENCE
TECHNICAL REPORT SERIES

A APR 2 8193 10

--l UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

j3 20742

".Tvd for publIe rel8&SO

83 04 27 020

Functional Semantics

Richard Hamlet
and

Harlan Mills

Department of Computer Science
University of Maryland

College Park 20742

At, Anaysis of ooser pnram using a semantics *a combines feaum of te opgrdona and denotonal medds
dscb TW Ine"ad -h epR umny, ardlyc to , m caklu-'7-w. allows pWram meaninS to be

obtained bons pmpm sygn, and compared to a desired meaning. Meanings are functional,. sets of ordered (input,
otpw) ir. A sbset of Pical is used to illustrate eth teory.

TD T

A PR 4 983

Dr. H uare's reerc was supported by the Air Force Office of Scientific Research (Contract F49620-S0-C-000 I).
CoMpO , was IPMvidd by the University of Maryland Computer Science Center and the Department of
Comp e Scimo.

1 TIC . ~ ~ -T F, T." "FE T
TO'r1 ErTr , , . . d ind i.

This te' " . ,-12

approvc • , I..
Distributio'" ed.

MATTHEW j. yj;,'BChief, Technial Information
DivsioU

to , ; "" "" *.****-*.*.*.*.- .. . ;. ~ f : : .. , .. ,', ..

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

•REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

I1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

AF)SR -TR- 83s-0 05 119"_________7_
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

FUNCTIONAL SEMANTICS TECHNICAL

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a B. CONTRACT OR GRANT NUMBER(&)

Richard Hamlet and Harlan Mills F49620-80-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Computer Science AREA& WORK UNIT NUMBERS

University of Maryland PE61102F; 2304/A2
College Park MD 20742

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORTOATIf.,

Mathematical & Information Sciences Directorate
Air Force Office of Scientific Research -1. NUMBER OF AGE

Bolling AFB DC 20332 31
14. MONITORING AGENCY NAME & ADDRESS(II different tron Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
ISa. DECLASSIFICATION/DOWNGRAOING

SCIVEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different irom Report) 0 r2 Pc

DTIAB

JU_1tl80uatl . '

IS. SUPPLEMENTARY NOTES

Awvui Lilt3 Cod

19. KEY WORDS (Continue on revere. side if neceeary nd identify by block number) "All as / o

20. ABSTRACT (Continue an reverse side If neceaery end identify by blocr'muWor)

Analysis of computer programs using a semantics that combines features of the

.1 operational and denotational methods is described. The method is an explana-

tory, analytic tool, a "program calculus" that allows program meaning to be
obtained from program syntax, and compared to a desired meaning. Meanings are
functional, sets of ordered (input, output) pairs. A subset of Pascal is used

to illustrate the theory.

DD , ft7 1473 UNCLASSIFTED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

83 04 27 020

• _ . -.. ,* - ..-..** .. --- - - --. - _-. -. :.: .- :....-.? -'. '..;"

iboduamcon

lree impo ant theoretical underpinnings of computer programming are:

(I) Syntax. Phrase-sucture grammars (usually context-free) are used to specify the form programs may take Ill.
It is possible to give very precise descriptions using more complex grammar mechanisms [2,3], but a collection of
"static semantics" informally given is the rule 14]. In any case, there is almost no disagreement about the
appropriateness of defining language syntax using grammars.

(2) Semantics. Meanings can be assigned to programs in ways ranging from clever use of natural language [1i
through semi-formal aids [5] to careful mathematical definitions [3,6,7]. Syntax is exploited to break a program
into units whose separate meanings are defined, then combined to form the meaning of the whole. However, there
is no consensus about the "best" semantic definitional technique. Furthermore, it is easy to confuse definition with
specification (see (3) following) because each technique carries with it a natural method of reasoning about the
meanings it defines.

(3) Specification. The definition of programming-language semantics captures what a program does mean;
specification captures what one was intended to mean. It is natural to use a technique for specification that is
closely related to the definitional technique-then it is possible to reason about programs, that is, prove things about
them and their specifications.

This pqe describes the so-called "functional semantics" of Mills [8,9], which combines features of the operational
and denotational approaches. Care is taken to separate definitions of semantics from specifications, and reasoning
about programs from both. The technique is both intellectually satisfying and practical.

It may be helpful to describe our goals in terms of the best-known alternative semantic/specification theory, the
Floyd/Hore assertion technique. (In the discussion to follow, the ideas of "truth" and "proof" will be treated
informally, to make clear the computer-science issues at the expense of the logical ones. For a complementary
treatment, see Apt [101.) If the paper were explaining the Floyd/Hoar technique it would first define the meaning of
the syntactic building blocks of programs (expressions, assignments, conditionals, loops, procedures, etc.). Since the
Floyd/Hoare method uses assertions in a first-order theory whose syntax overlaps that of the program, these meanings
take the form of verification conditions, statements built for a language construction from assertions attached before
and after it. The verification condition for (say) assignment VA is thus a definiion of meaning: given pre-assertion P
and post-asserftion Q, VA(P,Q) holds just in case the bIth of P followed by execution of the assignment guarantees the
truth of (.

Specifications for the Floyd/Hoare method consist of a pair of assertions, the first (input) constraining initial values
and the second (output) pescribing final values. That is, the desired behavior is that when any values satisfying the
input assertion are provided, a result is to be computed that will satisfy the output assertion. (in the the so-called
"partial correctness" form, the result need only satisfy the assertion if it is forthcoming. This is obviously a poor sort
of specification, since it can be universally met by a nonhalting program.)

Finally, with both semantics and specification defined, it is possible to reason about programs. At its most abstract,
this easoning takes the form of trying to devise assertions that separate each program construction whose meaning has
been isolated. With given input and output assertions, this determines all the verification conditions, and proving that
each is true establishes that the programn meets its specification. The practical application of the Floyd/Hoare method
then reduces to finding appropriate "intermediate assertions" to go with a program, ones which lead to verification
condition that can be established. In many cases there are natural choices for these assertions, choices which
guwanee that the verification conditions are true. For example, if the assertion before an assignment is the same as
that after it, but with the assigned expression substituted for the variable assigned to, then the defining verification
condition holds and need not be considered each time.

For complex constructions of a programming language, the necessary intermediate assertions can best be determined
by examining the program and trying to capture in an assertion just what is in fact true at the intermediate point. A
substantial component in establishing verification conditions involves not their form arising from the language
definition, but their inclusion of the pre- and post-assertions. Since those assertions are concerned with what is true at
a point in a program, they express facts about program values and operations. In this way much of a program's proof
comes to be concerned with its subject matter. For example, number theory will be used to prove programs involving
counting; the theory of permutations will be used in sorting, and so on.

In summary, were we treating the Floyd/Hoare method we would:

(I) Define cu programming language construction by giving its verification condition. (The "constructions" are
those based on a syntactic decomposition into appropriate units sufficient to construct all programs.)

~~~~~~. ,,,,- ......-..-.... :.-. . :-.._,-.--. - .-



2 Introduction

(2) Define specification by a pair of input/output assertions, and define correctness of a program relative to a
-7 specification as: if the input assertion is true, the program must execute so as to make the output assertion true.

(3) Describe practical methods of discovering intermediate assertions so that the task of establishing that a program
meets its specifications is simplified and mechanized insofar as possible.

(in passing, we note that such a treatment of Floyd/Hoare logic is not easily available. Many of its supporters could
supply it, and it could be obtained from the literature with only routine (but substantial) work. Nevertheless, students
of computer science often learn the method without much understanding.)

There is a further component to a semantic theory that we do not intend to address here, which for the Floyd/Hoare
method would be as follows:

(X) Give rules for design and construction of programs to given specifications, such that the program and its
assertions (and proof) fit together naturally.

This final step is the most difficult, but the most important in the application of a semantic theory. However, it is
inessential for understanding. It is quite possible to have a satisfyring, revealing explanatory theory about the world
which is yet difficult to apply in practical cases. In this paper we stress analytic, explanatory ideas, and avoid the
ideas of synthesis. It is not that our theory is deficient in this area. To the contrary, it is used as a practical design
method in industry; this paper deals with its theoretical underpinnings.

The rest of this paper is organized as follows:

Section Contents

2. The Language Describes the programming language whose
semantics will be subsequently defined.

3. Functions and Gives the character of the semantic
Data States theory to bedeveloped.

4. Linear Programs The complet theory is developed, but for
the special case of programs without
conditionals or loops.

5. Correctness Defines the desired relation between
specification and program meaning.

6. Conditional Statements

7. Iterative Statements

8. Procedures

9. Summary and Conclusions

2 The Languae

In choosing a programming language to explain, when the subject is not that language but the explanation, there is a
fine line between the real and the abstract. On the side of abstraction, it can be argued that the language should show
off the features of the explanation to good advantage, and the peculiarities of real languages should not be allowed to
confuse a clea picture. But the real-side argument is equally cogent: if the explanation cannot easily handle
complications that exist in practice, it is a failure.

As primitive data types we include only character data and files of characters. The virtue in this choice over
nmeric types is that it eliminates number theory--not the central language-theory idea--from the example. There are

fwnatural operations on characters, but comparisons, and the operation of "next in alphabetic sequence" are
thlde;de latter is undefined at the end of the alphabet.



2 The Language 3

Statements of our language present less difficult choices. There is an assignment, read/write, a conditional,
" iteration, and procedure invocation. The most important decision here is to allow the creation of intermediate results

through assignment (and thus deal with "sequential" instead of "functional" programming), and to make statement
sequence the fundmental construction of the language.

Declarations must be treated by any reasonable semantic theory, but block structure is not central to our language.
The idea of two identical identifiers with different meanings is retained by allowing declared procedures to have local
variables.

Of the many combinations of procedure call and parameter mechanisms, we have chosen call-by-reference and
recursive procedures as the ones to include.

The language that results from these choices is probably closer to IAL (of which MAD [111 and JOVIAL [12] are
common examples) than to Pascal, but since the latter is much better known, we express our programs in a subset of
Pascal called "CF Pascal" (for Charcter, File). Although for present purposes it is irrelevant that this language is of
practical use, we have found it so for text-formatting problems, and for teaching introductory programming [ 131. The
exact scope of the CF subset is best defined by the semantics to follow: CF Pascal includes what we define, and
where the Pascal definition [141 is clear, we define it that way.

3 Functions and Data StatN

CF Pascal programs, viewed as "black box" objects, have two special files, I NPUT and OuTPUT; a program
transforms the former into the latter. Because these files contain chare sequences, the meaning of a program is a
string-to-string mapping. It is the "denotational" view of semantics (usually credited to Scott [IS]) to assign to a
program text (itself of course a string) a meaning from the string-to-sting maps, and to construct this meaning by first
assigning appropriate mappings to program peu, then combining them into a meaning for the entire program. To the
contrary, in the "operational" view (which goes back at least to Turing [16]) of semantics, the central role is played
by an internal program state, and the puts of the program ae viewed s authorizing wtnf mions of that State. The
program's function is then the collection of all pairs that begin and end a transformation sequence called a

The sematic theory to be presented here uses both ideas. We make essential use of an internal state and its
transformation, but we express the state-to-state maps denotationally instead of speaking about computation sequences.
The result combines the low-level, step-by-step intuition of the Turing approach with the clarity of Scott's overall,
funchonal view.

3.1 The CF PaSal Daa Stato

With only characters and files of characters, the values associated with quantities internal to CF Pascal programs come
from an alphabet and strings over that alphabet, with the complication that files are "marked" to separate the partalready processed from that yet to be processed. That is, a file is technically a pair consisting of a "past" string and a

"future" string. Thus a data state of a CF Pascal program includes values from the two sets: characters and string
pairs. Each value is connected with a program identifier, and represents its current "contents." In the denotational
view a data state is therefore a mapping from identifiers to values. For example, in a program where the identifier
ouTpUT (of type TExT) and XXX (of type CHAR) occur (note the special type font employed for parts of programs),
a data state T might be:

T - {(OUTPuT,(PFijv 1, A)), (xxx,))

where swings such as hp I am shown in a special type font, and A is the empty string. However, when no
confusion can arise, we will display data-state examples in a simpler notation, using the type fonts to distinguish
values from identifiers. For example, the data state T above will be written:

T - (ouTPuTrP1,vi , XXX*2)

Nal -111 ,-if.................... .mi - L- , %•-.......... -- .-



4 3.1 The CF Pascal Data State

where the *separates identifier and value, and an underline marks the first character of the future string in a file.
In the example, OUTP=UT'S future string is empty. As an example of the denotational view, in which T is a mapping,
we would write in this case:

T(XXX) =,

To express the transformation of one data state to another, our notational device is to employ the program fragment
that effects the transformation, but to distinguish that fragment froin a string (the program syntax) by surrounding it
with a box. (The idea is due to Kleene [17].) Thus the denotational view that the meaning of a fragment is a
mapping, and meaning itself the association of a program string with its data-state map, is expressed by boxing the
string and being explicit about the state. For example, in the state T above, the transformation effected by

WRITE( '3' )

would be shown as

WRITE( '3'] (7) = (UTPUT*4,, -14, XXX*).

The notation is excellent for expressing examples; when we try to give the general case (for example if T were not a
particular data state, but any state) it works less well. The functional notation using ordered pairs is an improvement.
For this example,

I WR I TE ( 13 1 1j = {(T, U): T = U except that the past string of
U(OUTPUT) is the past string of
T(OUTPUT) with $1 appended).

3.2 Meaning of Expressions

The meanings of CF Pascal statements and programs are constructed from the meanings of CF Pascal expressions.
Because the language is severely restricted, there are very few of these. The meaning of an expression is a mapping
from data states to the appropriate value range (characters for CHAR expressions, string pairs for files, and {true, false}
for Boolean expressions). If X is a variable (necessarily of type CHAR or TEXT). then

(7) = T(X).

For example, if

T = (0UTPUT*r% ,XXX*i)

then

;. =

% FZ5F (7) =

(The file notation does not distinguish a blank future string from an empty one; rather than introduce a visible "blank"
character, we will avoid blanks in examples where they would cause trouble.)

The constants in CF Pascal are of type CHAR, and their meanings are the obvious ones:

.................... .



l7::. . ., .. : : ? , ', _ .'.. . .
.  

, . , *, , m .+ . . . . ,.. . o -

3.2 Meaning of Expressions 5

- () A

etc.

for all data states T.

The only other CHAR expression uses the built-in function SJCC, and its meaning is defined inductively. As a first
attempt, we might try:

SUCC CE) (7) =the character following M (7)
in sequence,

where E is any CHAR expression, and "in sequence" is the lexicographic character ordering defined for Pascal.
Because the character ordering may differ from machine to machine, and to illustrate the treatment of runtime errors,
we here take suc to be defined on A through I in the obvious way, but make

I SUCC€'z') I

undefined for all data states. This statement could be added to the English of the trial definition above, but instead
we move the data state into the defining condition, and give the meaning function itself as a collection of ordered
pairs:

[BCCE = {(T, c): (7) is the character b,
and c follows b in sequence).

In this definition, 9UCE can fail to be defined at a particular input state T for two reasons. It may happen that
M is not defined at T (and hence CE (7) is no character b as required), or that b has no following character c. In

either case, this T never appears paired with any c in the defining set.

Finally, Boolean expressions can be given meaning. Only single comparisons between character expressions are
part of CF Pascal, and the definitions all have the form:

-- (7) = true if M (7)

precedes [LI 1(7); false otherwise

for all expressions E and F (and similarly for the operators other than <). In contrast to the treatment of suCC, we
here assume that each pair of characters can be meaningfully compared, but only obvious situations like 3 < K will
occur in examples. Care is required here because of the occurrence of the box functions on the right side of the
definition. Should one of them be undefined, then the meaning function of the Boolean expression is also undefined.
This corresponds to the Pascal convention of complete evaluation (as opposed to McCarthy evaluation) of Boolean
expressions, and to the arbitray choice that once a runtime error occurs, the failure of meaning propagates. Failure to
be careful about such definitional uatters has long been a source of troble in program proving I181.

The definition of meaning for CF Pascal expressions is now complete.



6 3.2 Meaning of Expressions

3.3 External Strings and Data States

The meaning of a program must be a string-to-sring function; the meaning of a program fragment is a
data-state-to-data-state function. To bring these into line requires associating a string that is presumed to constitute the
input file with an appropriate internal data-state string pair attached to INPUT, and similarly associating the internal
OUTPUT pair (initially empty in both past and future parts) with the program output. The necessary actions can be
imagined to be the meaning functions of the program header and terminating period, program parts that therefore
transform strings to states, and states to strings, respectively.

PROGRAM P C I NPUT. OUTPUT) I(D)

= (I NPUT*D, OUTPUT*)

. I ( .... OUTPUT*D, ... ) = D

where D means the empty string A paired with D: (A, D), that is, D with its first character marked; and D_ means the
string pair (D, A), that is, D with the mark on an empty string following its last character.

3.4 Calculating Program Meaning

The semantics to be presem d below is a functional "calcutus" ta allows step-by-step computation of a program's
meaning. By anticipating some of the definitions to be subsequently presented, we can now illustrate this calculus.
For the purposes of illustratio, the following ae special caes which will appear later in more general form:

BEGINEN 1

1BEGIN I F E THEN END = {(, 7): - is defined at 7l

where I is the identity function. (In the second caw the function is either I or a subfunction of I defined just where
L is defined.) A program's meaning is defined to be the (functional) composition of the meanings of its fragments,
taken in order. Then we can calculate:

PROGRAM PICINPUT. OUTPUT); MGIN END. (D)
= END,= ( rOG M PIC I NPUT, O )I(D))

(meaning of the program is the composition of its parts' meanings)

r BG IN END. I ((I NPUT.D, OUTPUT*_))

(definition of the meaning of the header)
- -. ( IE.IN END ((I NP T.D, OuTPuT .)))

(composition of parts again)
F 7 ([((I NPUT*D, uTPT*))

(the meaing of the null statement is the identity function I)
= [ ((1 NP. D, OuTPUT.))

(by definition of 1)
-A

(deftition of the mewing of the final period).

And aden,

SF:IWiM ItNIOUT., OUPUJT); BEGIN IF SUCC'Z') < 'A' THEN END 1(D)

4 "* u , ,-, -- , ' ' . - : -. , , , . - . ,. "- . " . - . - , . - , - - . . . . - . . - . . , . .- . , - '-



3.4 Calcatng Proram MeaIwng 7

= jJ (I BG I N EN.D ((I NPUTOD, OU)TPUT.-)))
(as above).

The function

BEMG IN I F SUCC C Z') < 'A'l THENEt

is by definition either the identy fuionM or undefned, depeniding on the evaluation of the two CHAR expr tsons.
B oth ave (or fail to have) value independent of te stt, namely u

SUCC(C 'Z'3 (1) = charaer follwing [-T-] (7) (if any)
= charate following Z (if any)

but in faict there is none. it is therefolre irrelevant that

[Z71(7) -A;
the inner-t functin as undefined, and the result is that the program P2 means a function that is everywhete
undefined, that is, the empty function.

4 LUne. Program

This section includes the definitions, of meaning for each imperative staet of CF Pasca, by subsetion:

Subsection rgi at

4.1 Null staement
4.2 Variable declaraion
4.3 Assignment staement
4.4 Statment Sequence
4.5 WR ITE statmenit
4.6 READ statement

4.1 "u ShUnsnt

A~ihoa di the nuNI " steen Ofeonly eater propim. by acien, It IsI a lIiUmate part of CF Pascal. The
sttmeM "doa nothing" which mem that whateve data same exist before its exection is unchanged afterwrs
The fienk with tis behavior is the identity 1. Thus define:



8

4.2 Variabl Declaration

.' The declarations within a program have a role in the program calculus similar to that of the program header: they
modify the data state so that it contains the proper identifier names for the remainder of the program to process. Each
VAR declaration has a fumctional meaning that transferms a data state in which its identifier does not appear, to one in
which it does appear. Here we have another choice to make: what value should be associated with such a new-made
identifier, and what are the rules for using this value? In some Pascal implementations, a special value that cannot be
confused with any other is attached to newly declared identifiers, and this value cannot be referenced without a
machine trap, so the variable must be overwritten between declaration and reference. It is more common to attach an
arbitrary value to declared identifiers until they are overwritten (often the left-over contents of memory previously
used)--such a value can be used, with unexpected results. It seems clear that we should adopt the former view: use of
a newly declared identifier is a run-time error until it has been given a value.

The effect of a VAR declaration is to extend the domain of the identifier-value map to include a new identifier. To
reflect the possibility that any value might be subsequently acquired, we define the meaning of the declaration to be a
relation including all values of the appropriate kind. That is,

VA=v: K ={(T, W): W = T U

{(V, x): x is a value of type/t} }.

This relation in which all possible values are paired with V is awkward to write, so we introduce a shorthand of "?"
(not the character ?, as the typography shows) for the multiple values. Then for example the program part

VAR Fresh: CHAR

transforms execution state

(, N 'uT*ABC, OUTPUT*_)

to execution state

(I NPUT*BC, OUTPLJT* , Fresh*?).

In the box notation:

IVAR Fresh: CA(i NPUT*AIC, OUJTPJT*_)

= (I NPUT*ABC, OUTPtUT*_, Fresh*?)

The decliration of multiple variables requires an obvious extension of this definition.

. When a data state is not a function because in it some identifier V is associated with all potential values (in the
shorthand, the state contains (V.?)), then the expression V has a meaning that is the undefined function. That is, in
this case F is undefined for all states.

" 'p-.Y k l' " ' ", =L -: ', .- '.'' : ,...., "... . -;- . : -



! 9

4.3 Assignment Statements

The intuitive meaning of the assignment statement as a data-state transformation is that the identifier on the left side
." ceases to be associated with its old value, and instead becomes associated with a value obtained from the right side.

In CF Pascal, assignment statements are of the restricted form:

V :=E

where V is a variable declared as CHAR and E is either a variable declared as CHAR or a literal character enclosed in
single quotation marks, or a nest of BUCC function calls founded on such a variable or literal. Section 3.2 has

*formally defined the box function for such expressions as a mapping from data states to character values (which may
be undefined for some uses of SuCC). The investment in notation now pays off in a concise definition of the
meaning of an assignment statement:

V E =((T, U): U is the same data state
as T except that U(V) = W (7)}.

As usual, the definition includes the implicit case that should L) be undefined, then so is the assignment-statement
function undefined. The failure in not in the theory's definition of meaning (the box function): the box function is
defined, to be the everywhere-undefined function.

Here are four examples:

VI 'C' I ((vi*A, V2*0)) = (V1*C, V2*),
V2 = ((V*A, V2*1) = (V*A, V2*A),

I V S.uCCw) I is undefined on the state (vI*),
,v:V 2= v 2 is undefined on the state (v2*?).

4.4 Statement Sequences

The fundamental rule of the program calculus is functional composition. To calculate the meaning of a sequence of
CF Pascal constructions, first obtain the functional meaning for each one, then compose those functions. In many

*cases, constructions are separated by a semicolon so we can write:

s,; s 2 [ (7)),

or in the purely functional notation,

where indicates composition.

The keywords BEG IN and END are used to group statement lists in Pascal. Within these lists there may be a
*) number of statements (or none). But except for the grouping, there is no meaning attached to the BEG I N-END itself.

Its meaning is the meaning of what occurs within it. Thus:

[BEGINLENDJ = L

where L is a list of statements.



... p ,,-.- -- 2 .* .

10 4.4 Statemeon Sequenes

There is here (and above is less obvious caes) a lack of precision caused by omitting detailed syntactic analysis.
Presented with a block of program text surrounded by a box, how is the text to be broken up into units to which the
definitions are applied? We have used words like "expression" and "statement" and "declaration" as if they had
precise meaning in any such text. And of course, if care were used, they do have precise meaning, given by the
derivation tree for the program. In that tree at any level there is precisely one "expression," etc., indicated by the
nonterminal of that name in an appropriate CF-Pascal grammar. This use of grammar as a basis for the semantics
goes back to ALGOL 60 [1], and may be the most inportant feature of grammar-based syntax. Here we do not make
the correspondence very precise, but in examples we order the compositions as they appear in the derivation tree.

4.5 WRITE-Statements

Whatever a program may do internally to its execution state, the result cannot be observed by a person unless
WRITE-statements are included to communicate the internal state to the outside world. In CF Pascal, a
WRITE-statement may include only a sequence of expression arguments (of the kind defined in Section 3.2). With
this restriction, each argument has a box function already defined. The meaning of the statement can then be given in
terms of these components in the natural way: a WRITE-statement appends to the special identifier OUTPUT in the

* data state the character values of its argument items, in order.

Let a WRITE-statement have arguments E,, E2, ... in order. For execution state T, form the values:

-.:i v, = (7), V2 = (7)...

Then the value attached to OUTPUT in

I E ... ) 1(7)

is T(CouTUT) with V, and V2 and ... appended in order.

Enough of the program calculus has now been presented to handle the very simplest complete programs. For
example, if P is:

PROGRAM WritHellIo(INPUT, OUTPUT):

' VAR

LtterL: CHAR;

BEGIN

LetterL 'L0;

WRITE('H', 'E'. LitterL, LotterL, '0')

END.

then if the input string is x the program header and VAR declaration establish the state

(I NPUT*X, OUTPUT* , Latter.L*.)

on which the program works as follows:

WRITE('H', 'E', LetterL. LetterL, '0']

( LettorL : 'L'

* " ((I NPUT*x, OCITUtJT* , LetterL*?)))

= FWRITE('H', 'E', LetterL. LettorL. 'O' )

((I NPUT*x, OUTPUT*, LetterL*L))

by the action of the assignment statement and statement composition. The values of the arguments in the
WIfFE-stment are:



4.5 WRITE-Statements 11

'H' ((I NPUTx, OUTPUT*-, Lot terL*L) =

F E7 ( NPUT X, OUTPUT, Lett erL-) = E
Lstt(0 ((NPUT*x, OUTPUT*- ,LsttrLL)=L

' ((INPUTx, OUTPUT*_, LetteriLi.) = 0

The WUTE-statement thus changes the execution state to:

(I NPUT'X, OUTPUT'HLLO, LetterL*L)

and the final action of the. following END is to produce the meaning of program P:

O y) = HELL0 for any y.

4.6 READ-Sttments

The liM of arguments in a CF Pascal READ-statement can consist only of identifiers declared as CHAR variables.
READ-statement meaning is easy to give if enough characters ae available in the data state (i.e., attached to i NPUT
as fte sring). However, should thwe be too few characters, the READ-statement's meaing function goes
Sundefined. The case of multiple variables in a READ-statement is a straightforward extension of the single-variable
case.

Suppose then that a data-state value for I NPUT contains at least one character in its future string, say c. In the
abbreviated form of a data state, write such a value as

I NPUT*x c y

" where x and y represent the parts (if any) of the value not of interest. (x is the past string; the future string begins
with c and ends with y.) Then the meaning of

READ(Cvl)

where the variable is suitably declared CHAR is

READ Cv I _ ((INPUT*x cy ..., Cv I*v...))
(I NPUT*x c y, ... , CvI *c...)

where the division point between the past and future strings for I NPUT now occurs just before y.

As an example, consider the program P:

PROGRAM Change2C INPUT, OUTPUT):
VAR

C2: CHAR;
EGIN

. !:REA)(C2);
WRITE( 2).

FW.ADCC2);

END.

-, We work out:

!(AB)



12 4.6 READ-Statements

The program header and the VAR declaration establish the execution state:

*(I NPUT*AB(C. OUrTPUi*_, C2*?).

Then the successive statements yield:

IREADtC2); WRITE(C2); READCC2); WRITE('2')I

((1 NPUT.AB, oUTPUT_, C2*?))

% WRITECC2); READ(C2); WRITE('2') I
'" ((I NPtT* CG, OUTPJT* , C2*A))

'. = IREAD(C2); WRITEC'2' 1
(( NPuT*AB, OUTPUT*_. C2=A))

= WR I TE C '2') ((1 NPuT*ABC, OuTPT*A_, c2,9))

= (I NPT*I , OUTPUT*A2_, C2*).

The final yields:

Reading pasend of file is a nntime error in CF Pascal, so in the definition we must exclude those data states in
which there are insufficient characters on the future string attached to iNPuT. Define:

IREOcc) I= {(T, u): te first character of the future
string in T( I NPUT) is c, and U
is the same as T except that (i) c

is transferred to the end of the past string
*44=

in U( I NPUT) and (ii) U(C) = c}.

As usual, note the failure of definition expressed by there being no first character as required, and hence no ordered
pair in the defined function with this property.

4.7 File Input-Output

CF Pascal acquires its power from the use of intermediate files which may be written and then read back. For
example, sorting can be accomplished by separating the input into multiple streams which can then be merged. For a
variable Fv of type TExT the statements

WRITE(Fv ... )

READ(Fv, ... )

act as those defined above, but on the file Fv instead of OUTPUT and I NPUT. There is considerable complexity
introduced by this extension, because files must be properly initialized with

REWRITE(Fv)

for (over)writing, and

RESET(Fv)

for (re)reading. The ability to specify a file name raises the possibility of numerous runtime errors, for example,
trying to read a file that is being written, without using RESET. To handle these complications requires adding
information to the pair of strings that is a data-state file value, namely a "mode" tag for read/write status. File values

% . - , ' - .. . . . . .



,77 7 7--7.---.7"

4.7 File Input-Output 13

are en triples consisting of the past and future strings and the mode tag. The meanng of REWRITE and RESET,
and the changes to the meaning of WR I TE and READ can then be given in a straightforward way. Since we will
not here analyze programs using file input-output, these definitions are omitted.

4.8 Analysis of Uner Programs

The examples of this section have shown that given a linear program and any particular input string, the calculation
of the resulting output string (if any) is a straightforward, mechanical process. It is a little more difficult to begin
with the program alone, and calculate the function it means. The difficulty is one of notation, since the

tset-tu c definition of the meanings of program parts can be difficult to combine concisely. We mention one of
several techniques that are useful in practice, the trace table 191. This device can be applied to any series of
assignments, and amounts to a symbolic execution of the program. A tabular sequence of equations is created, in
which subscripted versions of the variables appear, defined in terms of earlier such variables. The set of equations
can be solved for final variable values in terms of the initial ones. For example, the program fragment

BEG IN
VI V4:
V2 : V3:
V3 : V2;
V4 VIiEND

cannot be understood directly without some effort, but yields easily to the trace-table method:

VI V2 V3 V4

Vi V4; VI-V4o V21V2 V3,=V30  V41 V40
V2 V3; V12=Vl V22=V3 V32=V3, V42-V41
V3 : V2; V13=V12  V23=V22  V33=V22  V43=V42
V4 VI V14 ,V13 V24=V23 V34=V33 V44=V13

These subscripted variables are of the usual mathematical sort, not the program sort; that is, they represent fixed
unknowns, and the set of equations can be solved by repeated substitution:

V14 = V13 = V12 = Vln = V4o

V24 - V23 - V22 - V31 = V3o
V34 = V33 = V22 = V3 1 = V30

V44 = V13 = V1 2 = VII = V40

That is, collecting these results:

V14 = V4o, V24 = V3o, V34 = V3o, V44 = V4o

*: The analysis has shown that the program above has the same effect as

BEG IN
Vi : V4:
V2 : V3

-' END

which may be a surprise to the programmer.

.09



14

S.,

Any propm has a purpose, but that purpose may not require results in some exact form. For example, a program
my be required to print the members of a set, without their order or the page layout being specified. These

4%, variations can be described by providing, for each instance of input data, a set of acceptable instances of output
data. The description is a relation consisting of all pair of acceptable instances of input data and output data.
Therefore, a program specOlcation is defined as any relation whose domain and range are sets of character strings.

Just a a program function may be difficult to describe in a well-known mathematical form, but nevertheless
exists for every program; so a program specification may be difficult to set down, but is a mathematical relation
nevertheless.

An important special case of a specification occurs when the acceptable pairs of input data and output data form a
function; that is, for each instance of input data exactly one instance of output data is acceptable. This special case
of a specification relation is therefore a specificaton fwnction.

*..',* The specification (relation or function) for a program is a mathematical form of what the program is supposed to
do, a description of desired results. This form is entirely independent of any program to realize it, and in fact is
the starting point for writing a program. It is important to recognize that a specification gives no information about
how some program might perform to meet it. Since it is simply a collection of input-output pairs, it states what is
to be done, without a hint of a method for doing it. On the other hand, once a particular program exists, its
program function (which is the same kind of mathematical object as a specification function) defines what the
program does do, without regard for any intentions the programmer may have had. Furthermore, using the program

.':' calculus, this meaning can be calculated step-by-step from the program text itself. The program function itself does
not express how the program accomplishes what it does, but to calculate the program function requires full details
of the program's inner workings. A central question of programming can be simply stated in these terms:

Given a specification and a program, does the program fulfill that specification?

The technical definitions necessary to state this question are already available. Given a program specification
relation r and a progm P, we say that P is correct with respect to r if and only if, for every member x of the
domain of r (an instance of input data), P produces some member of the range of r which is paired with x in r. That
is, for each input x, P produces result y such that (x, y) e r.

The ogram Correctness)

Program P is correct with respect to specification relation r if and only if:

domain(r 13 [_D) = domain(r)

Proof The expression r n E identifies all acceptable pain of r computed by P. Therefore domain(r n F-I)
identifies the set of input data for which P produces acceptable output data. Since domain(r) is the set of input data
for which r specifies acceptable output data, the condition

domai r n I ) = domain(r)

ensures that P produces acceptable output data for every instance of input data defined by r. QED
Note that P may execute successfully for input data not identified by r, but such pairs of 1-P- are screened out of

(r nl F- ) by r. Note also that if P produces an unaccepale instance of output data. no member of r with that
input data can be in (r A FP ), and therefore domain(r 1 2J ) cannot coincide with domain(r).

In cue the program specification is a function, the condition for program correctness can be simplified as follows:

SCorollr (Program Correctness)
Pmoopm P is corect with respect to specification function f if and only if

.edm il~xProfThe expresionft1 A - -_. identifies all acceptable pairs off computed by P. which must bef. itself. That is, P

,' ' ' _ ., -. . ._ . • _ • - _ . _ ' . ,



5 Cofreftn 15

iorrect with respect tof ad only iftfn CE -f.

and id uifad oyiff . I QED

6 CoWNdl ell -~msto

Much of the power (and conylicatio) in proS comes from their conditional statements, which provide the means
of making deciom bined a only on puogsm input, but on intermediate values internal to the program. However,

. the meaing ofa single coa onda in isolation is easy to define.

6.1 Me@ l-ng of Con dl -s

Let

S= IIB

THEN
-' T

ELSE
E

wheB 5i s a Doolea .xpfsaa mad T, E am staents. Then

M[ (U) if [E (U)

[ S- (V , Of ) - ,,v,)

otherwise IaS i as no defined at U.

* Forexumpleif

S-ir- i V < v2
THEN

Vi :V2

ELSE

V2 V

Then

M ((vi *A, v34@)) -(vi *S, v2a4)

become

OJ ((vi I A, V208S)) - true.,

a) ((vinA, V"4)) - (VIeSI, V2*S),

ad the volme of M] forthis data sot is given by the. value of [CJ
* I ouer o SiWe a dd ef by cuss witout explicitly naming the data state, it is necessary to select one of two

9W of mipdin accordng Io doe Boolea expression. The following standard trick accomplishes this:



•,,, .. s-. * .2 .- ;-. -. 
•
.

.
. - .

.  
- . ' . '- . .- " ." . ." • -. .-.. ......-.... ' •.- .-- ' -'.1.. 7

16 6.1 Meaning of Conditionals

. = {(U, W] (U)): (U))U {(U, [E (U)): - [B (U)}.

The first set contains all state pairs in which the condition holds, and the second set those pairs in which it does not
hold. It is important to note the way that failure of definition can occur here. There is no "evaluation" of these sets
in any order. They simply contain or fail to contain certain pairs. For example, should [E fail to be defined for
some U, that U will not occur in the second set, independent of [j. Such a failure has no influence whatsoever on
pairs in the first set. However, failure of [B] is another matter. If this function fails to be defined for some U.
neither condition holds, and U is not paired with anything in either set; that is, [ is undefined for such a U.

-.'., The IF-statement

IFB

THEN

T

could be given a similar definition, but it can also be agreed to mean the same as:

IFB

THEN

T

ELSE

{nulI stmtsmsntl

so that its definition can be derived as follows:

.4 {Lfl (U) if CE (0)
SIF TH N (U) = U if - C (0

otherwise undefined

or, in the functional notation:

I IF B THEN T =

{(U,V): EJ(U)andV= I (u))U f(u, u0: - CE (u)}.

In the second case, the identity function is applied to the state, since that is the meaning of the null statement.

6.2 Analyss of Conditiom Stataments

Composing the functions dt result from IF-statements is no more difficult in principle than composing
imlamtve-statement functions, but the notational complication is even more severe. The trace table can be extended
to help in pactical cames. A conditional trace table has an additional column of conditions expressed in terms of the
valuhs in the table, namely the conditions required for the assignments in the table to take place. For example, the
p oglam put S:

, , :r -. ... . . . . .... . _ . - . ., " . :. _ . .



6.2 Amayisb of Condbtonal Statements 17

SWGIN
IF Vi < V2

THEN
VI V2

ELSE
V2 : V3;

VI a V3;
IF V2 < V3

THEN
VIR V3

ELSE
V3 V1

ENDC

will execule in ame of four sequens depending on which of t THEN or ELSE statment of the two IF-stazemnents
we selecled. Ident thee sequmme by noag T or E for the THEN or ELSE alternatives in order, so S(T,T) mean

* thed two THEN pt m tdbe, while S(ET) meams that tfims ELSE is taken then the second THEN. This gives a
condktonal Uace table soch w

ScLD1 Condition __ V2
IF V1 < V2 V10 <V2
THEN VI1: V2 Vl,-V20

V1 := V3 aim V12-V31
IF VIR< V3 V22 <V32
THEN VR V3 V23=V32

Th ucit oAl acond11iio ure to tahevaluesof thepreViou line, sincetecondition is evaluaed at te beginning
of te w m u. An ndinuyssuigmm hastecondition hu. Fordths puticularequenceto be eecued, evuy
codii ON l, the d condition for the sequence is the conjunctia. of the conditions in the table. Eliminatng
subwcrpts, tis condt is.:

(Vt* V2s) md One and (V?. V3o,)

(sinc V2- 2m V a nd V32-V3. u the dw o t= le) and the equations tha resut am:

V13 -V%% V2 - VU.V35 -VU.

*Thm dt esing m ld caseS(FT) isthe et

(U, I 1 V3; V:V3 (U)):
9 V1 < V2] (U)uu and MI3U).

S(-)Condition VI V3
IF V1 < V2 VI. < We
THEN V1 : V2 VI,-V?0

*V1 :0 V3 V12-V3 1
IF V2 <V3 V22 2>V32
ELME VS : aVI V33-V12

* ft. whic we deduc the conditio:

4,(Vl < V2o) mnd(V.V3*)

* mmad the eqons:

I * - ~. % ~ ~ ., * ~ . .. * ..-- 7.- 1, . . -- -



18 6.2 Anulysis of Conditional Statements

V13 - V36 V33 V30

so due the meaning in this cae is:

{(U. vI : V3 (U)):
Vi < V(u) -Iv >= V3 (u)).

The cue S(E,T) caamnot occur (the conditional trace table leads to an empty meaning set); a similar analysis for case
*!' S(EE) yields a third set, and their union is the meaning of S:

FSI - (U, I V V3; V2 := V (U)):
I w < V2 (U) and v2<v3 (U)

U {(U, M = v3 (U)):
I V1 < V (U) and [V> (1)

U {(U, VI : V3 V2 v3 (U)):

Vi > V23 (U)).

7 ltsdlon Stmmnt

With ieration-five programs, we have seen bow to derive program meaning as a composition of the meaning of
pnWr=n puts, in which the number of psts is determined by the static program text. However, with iteration,
Irat parts can be executed repeatedly. If the number of iterations were fixed, the part functions would be fixed
compiosio of simpler pas functions. But the great power of iteration statements arses from a variable number of
itertions, so we need not be surpr sed that the difficulty of dealing with iteration statements increases accordingly.

Although in a long iteraioo-free program there could be a great deal of notational difficulty in calculating the
program's meaning function, there is no difficulty in principle: each statmenm as its functional meaning, and the
meaning of the whole is simply their composition. There is no mechanical way to deal similarly with iteration
statements, but dis section presents a definition of meaning, and techniques for provming that a loop has a certainmeaning, which must be (-mn-chanically) guessed or supplied independent of the program text.

7.1 MGM" of hiratlon am ents
-- 4

The power of iteration exacts a high price when it comes to calculating the meaing of WHIE-statements. The
pattern of ow definitions has bee to give the function of each statement-type in tenm of its prts. The puts of a
WHaE-stemewt a evideatly the condition (determining if the iteration should continue) and the loop body (what to
do if it should coutinue). The difficulty is that the action of the loop body is repeated in forming the meaning of the
loop as a whole, and this repetition occurs a number of times that is not explicit in the text. If the number of times k
h imedo occurs wn kmom, there would be a way out of the difficulty, for then the function of the entire
WME-' atmew would be a composition of its body's function exactly k times. For example, if it were magically'i,; wH i L.a B Co D

"wow mround" exactly twice, thm we could consider it equivalent to

EKOIND; DEN

nl dii msk would be

Saba. &A. 
....



7.1 Meaning of teraton Statements 19

W I LE BO D D-5-51

There is yet a further complication in defining the semantics of the WHILE-statement. It may happen that the loop
never termnates. In that came die "number of iterations" makes no sense, and the function of the loop is undefined
for the state dhat cued die unlimited repetition. The number of Iterations to completion is in all cases the key to the
WHIE-stat-men. Uf this number is k, then the function of the loop is k-fold composition of the function for the loop

* body; if the iteration continues without end, the function is undefined.

There is a direct way to capture the function of a loop, by asserting that the state resulting from the loop's
execution is the result of the loop body executing k times, for some unspecified k. To be consistent with the intuitive

maigof the loop, this k (if it exists) has the property that the loop condition is true before die 1 st, 2nd, ... kth
iteration, then is false. That is, after k iterations the condition fails for the first time. The WHILE-statement meaning

teefore consists of exactly those ordered par for which there is the appropriate k, with the output state being a
k-fold action of the loop body on the input state.

T7he definition of meaning along tuhesims will now be given. Let WHILJE-statemnent W be

WH I LED 00

D

where 5 is a Boolean expression and D is a statement. Then define

=W ={(T, U): Ik intege, k>O0
v iinteger,O< i< k

For example, consider the loop U:

WHILE V1 > 'V' 00
IF V1 '9' THEN

'S ELSE
IF V1 1 9' THEN

ELSE
VI SLcC9IJOCCVI)3

-. - Suppos e htoh value attached to Vi in dhe input state for U is x. How -ay times k will the loop be repeated? If x
< 1. du k-O0. Ulx is adiit, hek - 0-#Y2 runded up tothe narw tM . (For example, if x= 1, then
(10-9)/2 -I/2 or rufded up, k- 1; if x-3,d= (1-3)12 - 72, or k=-4.etc. It is clear, however, that vi will
end up I or 0, withou the necessity of determining k exactly.) If x > 9, aft a number of iterations roughly half the
diaime from x lo the coid of the character-order subsequence, the meaning of the SLUCC expresion will be the
uindalhd 0, r -m -. Wehisn turn causes the assignment statement to -ea the undefined function, ad this means that
in ,hdsflhitionof the WMfLE-aftmnt eis no kfor die cmnx >9. Tbusthe meaning of the loop Uis:

.9,7,L



20 7.1 Meaning of Iteration Statements

U {(T, A): I < T(V) < and

A is the same as T except

that A(vi) is "] or 0 as

ST(VI) is an odd or even digit}.

7.2 Analysis of tMtlon Sta mentsJ
When the number of iterations cannot be easily determined, the loop controlled by the WHILE-statement cannot be
easily unwound as its loop body acting over and over. But it can always be unwound into the first time the body
acts, and then the rest of the times, if that first execution is guarded by a test to cover the case that the loop doesn't
execute at all. That is,

WH I LE D oo D

is equivalent to

BEGIN IFBTHEND; wHiLEBOODENO.

The equivalence can be seen by examining caes. irst, suppose the original loop body D is never executed (because
con-ition B fails immediaftly). Then in the expanded version the IF condition similarly fails, so the broken-out body
is amt executd, then in the epetition of the loop itself the condition B fails again, so the body is again not done.
Tis the two progrmas agee in this case. Second, suppose the original loop in fact executed its body exactly once.
The. the condition initially succeeds, but something in the body causes it to fail when tried a second time. In the
expinded vesuon exactly the same behavior is observed, with the IF condition succeeding, the broken-out body
executing and the repealed WHLE condition then failing. The remaining cases in which the original loop executed
more than once are simaI, the broken-out body takes the first execution, and the repeated loop picks up the

The discussion in the precedn paragraph can be mirrored exactly in the formal meanings we have defined, where
the fissetiomal meanig for each of the code fragmnents can be determined, and "equivalence" means that the functions
a the seme. The analysis by cases becomes a formal induction on the number of iterations required for the loop to

It may suem risag that this simaple device can help with the analysis of loops, but it does. The reason is that
tie rP ae loop is exactly the same loop as the original, and this allows us to write an equation in which the loop
fuction am twic Equating the meaning function for the two loops:

MI L,,. J o DI-D
j iiEIN IwFBTHEN D; WHILEB DO ENO .

I the enpoud atemeat of the second line the first part is a conditional, and the meaning of that can be worked
owt sep atly:

- I IFD En ILE B OOD

The facto of the loop baa explicitly reentered the equation. It will be clearer if we name this function so it can be

easily eopized. LAt

f WILE D=

The I q-i,, om is

-. 4". . .. .. ..........-............. .-...... ...



72 Analys of heation Statement 21

f- IIFE ,,N I ,

or

P ) -. I IF B TeND I().
Tul Mc1MSce equaio"m in con f is eful becamuse very ofkn we can gum (or beheve a comment to discover)
what a pue= is supposed to do. Then to powe tha it does indeed do so, t guesed fruction can be substituted
itmo th equatio forf On is requir in thi operation, however. -ne recrnc equation is one tha the function f
for th loop m satf,; but it does M folow ta my fction satisfying the equation is in fact the function of the
loop. Asiple exanqle win show the pidal. Consider a loop that nee terminate:

WHILE 'A' - 'A' 00 {nothing).

It is clearthat&is WiZ hi a faucton ta is empty-it contains no ordcd pairs because the loop does
not termine on my iqit. Butte domcorce redoces to

f-f

for this loop, since

IF 'A' - 'A' "nIj Iothirl

is the idaiy lion. Any Mactiomf saisies=, yt A save the empty function ae wrong for tde loop.

T remedy for this p rle- is to add ,nii which nle out such extmwu solutions to the recuence
equation. On obvis condiion, in view of the pi faove, is to enmue tht the finctio is no defined when the
loop fail sto - I - . Tha is, forf to be the loop Masctin require doa

domui(A Q dom@WIn W I LE BoD0)D

* ~Another pkitfls shown by the loop:

WHILE 'A' <> 'A' M (nothing).

lIn Obl case the WHIM satM enIt has a uIo tha is the identity function; it acts as a null staemient. But, again,
ince

f-f

and amy saise the eqution. All but h idnt fmcion am wrong for tie loop, however. Many
Macdm matiy t domain mmtr* developed above a wel; but, al except the idemy function viohft another
edly chkedid contom whn B don not hoIld:

,r =-T whever - UP ().

Hai, j * two addiin conditions we sufficent to ensure that anf satistng te rmmmce eqution is
doI of do vetlnment.

1•n WIL-tt. Vtfiain



22 7.2 Analysis of Iteration Statements

Let

W= WHILEB DO D.

Then

'- F7
if and only if-

I. domain(f) C domain( FC)
2.fT) = T whenever - [E (7)
3.A7) =A I F B THEN D 1(7)).

Proof. First, supposef= [ . Then conditions L.-3. must be established.

I. domain(f) C domain( [WJ ) because f and [E are the same function.

2. Suppose - [ (7) for some T. Then [ (7) =T by deinition, and hence sincef= IW , we have f(T7)=
T as required.

3. It has been argued above that

WHILE B Mo D

= IFB THEN DWHILE B DOD

and by definition of composition and W this is

CE ](7) = [ 7W (I IF B THK75D ](7)).

so the sa- equation follows forf, sincef =

Conversly, mppose

. domin() Qdomain( [-L-J
A 2. Al) = T whenever - B (7)

3.A7)=A IF B THEND (7)).

Then, we will show tht

f= E .

Let T be amy member of domain(f). Then, by I., T is a member of domain( W ). That is, WH I LE B O D .is

defined for input state T. Therefore, by definition there exists a k (depending on 7) such that

* [B ([n r-7 ) is fas,
but for each 0 < i < k-1,

Thm in hypoheis 3, wbtift k-I times for.

AT -A IF: B THEN D 1(7))

A IFB THND ( IFB THEND (7))).

-A IF mHN D N(7)1

"I thu Mociativity of composition. From the definition of the conditional, this is



P',:7-7-77 -. 7 77

I.'-"7.2 Analyss of Iteration Statements 23

since each of the evahuitions is at a sIte w TereE is true. On the ight side of this equation, the state is one inwhich [ is false, so by hypothesis 2, f does not alter tis state. Thus

• -.- = - : '(7),

and by definition of the loop terminating after k iterations,

so f ==Wj.QED
For example, consider the WHILE-statement U of the last section:

WHILE VI > '1' DO

IF VI = 'S' THEN

V1 '0'

ELSE

IF V1 = '9' THEN

V : 'I'

ELSE
VI SJCC(SUCCCVI))

whose function was claimed to be:

S= {(T, 7): T(v) < 1)
U {(T, A): I < T(VI) < and

A is the same as T except
that A(vi) is I or@ as

7XvI) is an odd or even digit}.

To prove this using the WHILE-statement verification theorem we must show:

1. domainQ) C domain( I]
2.fi7) = T whenever -()

3.A7)=flr IF vi > '1' THEN D (7)),

where D is:

IF V1 = 'S' THEN
,' V1 : = 01

ELSE
IF V1 = 'a' THEN

V : 'I'
ELSE

V1 : SJCC(9UCCCVI))

I. The domain off is evidently {c: c < 9). The program evidently terminates on V 1-values of , and L, and for
values of vi less than 1. On the remaining digits the program advances along the sequence toward P or by two
steps, md so mut halt.

2. Inuedide from the definitkm of f.
3. Consider two cas for the data state T:
If T(vI) <1 , then the box function of the conditional is the identity, and 3. holds.

".



24 7.2 Analysis of Iteration Statements

If T(v1) > , then the conditional box function is just [D , so we require fi7) ft [D7 (T)), and this is
evidently so by an analysis of the cases ol. I;, and - ', since the double SuCC preserves even- and oddness.

This calculation of the meaning of a simple WHILE-statement illustrates a difference in the program calculus from
the calculations of Sections 4 and 6. For iteration-free code, the meaning of programs can be mechanically
calculated, using the rules given in those sections. For WHILE-statements things are not so nice: it is necessary to be
given or to guess the meaning, then verify that the guess is correct. The situation is appropriate to the power of
iteration. In practice, finding a trial function on which to use the WHILE-statement verification theorem is not a

* problem. A helpful comment often supplies one, or intuitive understanding of the code can be used to work one out.
Once a guess is in hand, the program calculus establishes that it is or is not correct, with rigor equal to that used to
derive the functions of the simpler constructions.

8 Procedures

*: The meaning of CF Pascal procedure-call statements should be easy to define, since a procedure body consists of
statements whose meaning has already been given. (If the body contains procedure calls, the definition should close
at this point.) Three ideas complicate the picture:

(1) Procedures have local variables, whose names may conflict with other variables in the program. They may
make use of global variables from an environment different than the one existing at the point of call. In technical
terms, the data state for a procedure's body may be quite different from the data state existing before and after its
call.

(2) Procedures have parameters (called by strict reference in CF Pascal), which behave partly as local variables
subject to the difficulties of (I) above, and partly as links into the calling environment. In the latter ro t the
problem of aliasing must be handled: apparently distinct parameter variables may be a single called varia"+

(3) Procedures may be called recursively, introducing repeated instances of problems of (1) and (2) above, and the
further difficulty that the meaning of a call may be defined in terms of another call on the same procedure.

These complications can be handled by small changes in the data-state notation, and by a device based on the ALGOL
60 **copy rule- (11.

In outline, the meaning of a procedure-call statement is the meaning of the procedure declaration. The procedur,
header plays a role similar to that played by the program header: it transforms the data state from the one at call to the
one needed for the body, and after the body's meaning has been obtained, the calling data state is restored. Some
adjustments are necessary to handle variable conflicts between the calling and called data state. But except for these
technical details, the bulk of procedure-call meaning is simply the meaning of the statements in the declaration, most
of which are those defined in Sections 4. 6, and 7. When a procedure call occurs within a procedure body there is no

- difficulty--the definition is simply applied again and eventually a lowest level is reached in which there are no more
calls--unless the call is recursive.

* 8.1 Procedure Statement Moaning

The meaning of a procedure call in a data state T (the calling state) is the meaning of the procedure's declaration in
that state. Within a procedure declaration the only syntax that has no defined meaning (once procedure statements
have been defined) is the procedure header. We let the meaning of the header be a mapping that properly alters the
data state to account for the procedure's parameters. Imagine that a variable A is passed as actual parameter for a
formal parameter X. Then we wish to augment the calling data state by attaching X to whatever value A is attached to
there, and maintain this identification of X and A so long as the called procedure is active. A goo d notation pairs
these two identifiers with the value. For example, if the procedure declaration were

PROCEDURE Pr'o(VAR PI: CHAR)

and were called



8.1 Procedure Statement Meaning 25

Pro( V. I)

in the calling dat state

then the modified state would be

( I.. (vs i, p )*.

Formally. this change is difficult to make. The data state is no longer a mapping from identifiers to values. If its
domain is instead taken to be sets of identifiers, and V occurs in one such set in state T, then the definitions must be
adjusted so that ?IV) is the value attached to that set. Similarly, in the meaning of assignment and READ-statements,
values must be attached to the sets in which the identifier acquiring a value occurs. Without making the formal
changes to data states, we will use the notation in which sets of identifiers are associated with a value, and suppose
that the box function of an identifier results in the value attached to the proper set.

For simplicity in defining the meaning of a procedure header, consider a single parameter. If the declaration is

PROCEDURE Rou (V);

B

where B is the complete text of the definition, then the meaning of a procedure statement

Rou (A)

is defined to be:

RO VA)

PROCEDURE Rou(V) '

The header meaning

PROCEDURE RouCV) 1(7)

" is atu e nmasTexcept that V is paired with A in its identifiers, bot itaking the valueA (T) in U. The
inverse of tis mappng undoes ths data-tae tiansformatn : the value that was attached to the set containing V and A

is restored to A alone. Thus, the meaning of a procedure call is to alter the calling data state to include the
paametere , carry out the meaning of the procedure's statements, then restore the calling identifiers, some of whose
values may have changed.

6.2 ientifer ConiNcts en Local VaIledIs

" in pthological cam. the parameter identifiers added to the calling state by the procedure header may conflict with
identifir aleady in tht sae. Should this happen, it is the former that should give way to establish the meaning of
CF Pucal. Similarly, within the body of a procedure there we local vAR declarations, and according to the semantics
given in Section 4.2 these modify the state. Should ther be a conflict in identifiers, these local variables must give
way as well. A mechanism for resolving identifier conflicts was invented for just this purpose in ALGOL 60. as a

pat of the "copy-rule" definition of procedure meaning. and we adopt it.

Whenever a state is altered in defining the meaning of a procedure, each identifier to be added is checked against
thode already present in the state. Should there be a conflict, the additional identifier is systematically replaced. New



* 26 8.2 Identifier Conflicts and Local Variables

identifiers are created by appending i to the original one until a nonconflicting name is created. This new identifier is
then substituted throughout the text for the original, before the state is changed. Thus the new, unique identifier
enters the state, and the program text whose meaning is being defined contains that new identifier whenever it should
to preserve the original intent.

A notation for the systematic substitutions required to avoid identifier conflicts is more trouble than it is worth. We
will assume the necessary changes have been made. and make them in examples. Where possible the original choice
of identifiers will be made to avoid conflict. (But in recursive procedure calls this may be impossible; see Section8.3.)

The meaning for VAR declarations given in Section 4.2 adjusts the data state to add the newly declared identifier.
In the VAR declaration of a PROGRAM there is no need to later remove this identifier, because it ceases to have
meaning only when the program is complete, and there the terminating period extracts only the file strings from the
data state. However, the VAR declarations within procedures are different. Their identifiers must exist only as a part
of the meaning of a call, must not persist following the call. The relation given as meaning for a VAR declaration has
an inverse with just the properties needed: it maps a state containing the new VAR and its value (if any) back to one in
which the variable does not appear. Thus for a declaration followed by a block:

D = VAR V
BEGIN

END

the meaning is

[= VRV B•EGIN ... END.I" VAR- '

As an example of a procedure call, consider the program:

PROGRAM P-2(INPUT. OUTPUT).

VAR
Next: CHAR;

PROCEDURE Col lectV(FIag: CHAR);

VAR

Next: CHAR.
BEG I N

Next : 'B';
Flog T

END;

BEGIN {Pr2}
Next := 'A';

Co IectV(Next)
END.

When the procedure call that ends Pr'2 occurs, the data state (for input string .) is:

(I NPUT*x. OUTPUT* , Next;*A).

Sinc this example is not concerned with I NPUT and OUTPUT, in the sequel they will be omritted from the state to
simplify the notation.

The call on Cot t ectv has the meaning:

.4

'A . .... - : . . ... . . . . . . . . . .. . .



.i:-7'' . --

8.2 kdetfr Confkis and Loca Variles 27

I Col IeotV5Nsxt) ((Next*A))

SIRAOURE Col IectVCFIg: CHAR); VAR ... END ((Next*A))

- PF CEDURE Col IectV(FIlo: CHAR)

( VAR Next: CHAR. BEGIN ... END (((Next, FIog)*A)))

= PROCEDURE Cc IIo tV CFI e: CHAR) "( VAR NextI: CHAR

. (I BEGIN Nexti :- ... END

(((Next. F I eg)iA. Next I ?).

Woroing out the mening of the body itelf is omuighoward:

IBEGIN Nexti :a ... END

(((Next. F I sg)*A, Next *?))

- ((Next. F 1a)*7, Next 18.).

so the result is

I PROCEDUPE Col leotVCFli : CHAR) "(f VAR Next i: CHAR

(((Next, F I "q)*7, Next i13)))

- (Next*.

Here i a example prolisrm P on which ny uideaft of Pacal (and -any early compiler-wrieni as well) have
foundered:

FIRC GAM Confuscl(INPUT. OUTUT);

VAR

Which: CHAR;

PROCEDURE Zap.
BEGIN

Which :z 'Z' (Zap it. but which?)

ENO;

PROCEDOURE I me I do;
VAR

Wh i ch: ClH;

BEGIN

Which :a 'B';

Zap;
WRITE (Wh I ch)

BEGIN (Confusd)
Whioh :- 'A';

Inside;
WRITE (W i oh )

END.

Ima plrom "Zap's one of it Wh i Ch VARs, but which one? Is the maing

2) (0 -. ZA

or

(no- ma. ca be ,- by ,ma.,g a che of VAR names. Suppose the Wh i ch within PROCURE Zap



26 8.2 Idenbtfer Conflicts and Local Variables

were soie diffent name. Then zap would not have correct syntax: this different name would not be declared, and
vAR names widin i ,e o would be of no help. This Se along with the meaning being C (t) =

Using the definition at the point of the cal on I no i ce:

"' I 'nsd ((OUTPUT*-. Whl Ch*A))
= P OCEDURE I;id;W,1-( IV Whch: CHAR; END

( I PFCDURE I no i do ((OUTPUT*_, W ich* ')))).

BothI CIOEDURE I nis ide1 land its inverse are the identity function, since there are no parameters, so we have:

VAR Whih i : C "(I BEGIN Which. := ''; Zap; ... ENOI
((OUTPUT , Wh i ch A, Wh i ch i)))

= VAR Wh i Chi: CH!R "( Zap; WRTE(Whchi ) END1

((OUTPUT*_, Wh i ch*A, Wh i ch i *I)))).

BecaIuse zap has neither prametme nor VARs, the data state remains the same when its body meaning is applied:

= IVAR Whihi: CHAR .

(I ..ITE(W71chl) ( BEGIN Which : 'Z' END

((OUTPUT$ , Wh i ch*A, Wh I ch i 'i))))

- VAR Whiohi: CHAR '

((OUTPUT'*, Wh i oh'Z, Wh i ch 1 *I))
- (OUPtuT'_. Wh ,=c Z).

From here it is my to cakbat d M (1 ) = 3i.

81.3 ROcursMo

When a procedure call occmu within a procedur there are just two possibilities: either this call and others that it may
lead to eventualy come down to a procedure body in which no calls occur, or. one of the procedures in the potential
chain of cals has occurred previously in the chain. These alternatives are a consequence of the finite nature of
proplan: uWest one of the procedures is recalled, the list of all possibilities must soon be exhausted. When a
procethre ends up being reinvoked, it is said to be called recursively.

The consequence of blindly applying the definitions given earlier in this section to a nonrecursive call sequence is
lWpp: a definition of the meaning of the whole program results without difficulty. Similar application to a recursive

,equence is less satisfactory: it results in a recurrence relation in which the function computed by the recursive
puucede is defined i terms of itself. As a simple example. consider the program:

aT l . . - - - - - - - --..... .--- .- . .- - .- -



8.3 Recursion 29

PRO)GRAM TeetaddC I NPU. * OUTPUT);
4 Reae one character from INPUT and returns Y~es) or N(o)

deapendAIng on whether or not I t isa odd.- The act ion i a not
def ined i f I PUJT is e Mty or the f Irat character i a not
a digit.)

VAR4
One: CHAR.

PFRXNEURE OddCReult. Val: CHAR).
VAR

FiextVa I: CHAR.
BEGIN

IF Val a '9' THEN
A~ult -: Y'

* ELSE
IF Val z' THEN~

Result :- 'N'
ELME

BEGIN
NextVel := BLJOC(SJIC(Val));
Odd(Rleeult. NextVal)

END
EN (Odd)

BEGIN
PREA(One);

* Odd(Ckn. One);
WI TE IOne)

END.

Applyin t rulles praI d above so the cul

Od(One. One)

am the cod Sime

Od(One, One) (7)

T ucap tha One hall value Y'fi 710ne) I
T ecet d9 rmhos vaha N if n~one) I.

PROCEOURE Od(. .. 3 -'( IOdd C %eu It. NextWelI ()odherwise,

whEW Uis aw i wich Resu It and v.1 m e both grouped wit one from T. and with Nextva iadded, having
the valu two dho-afu-rs in seuen beyond the value atached to one in T.

i% bi fo is ruie of th smie thdat o-i in R- doEte mowing of a WHILE-staeement the meanring is
glean in Sees of lust f(using a modified soft). but with additional cases thue moo uea rec ey defined. probecng"
tho mcu-- sl " call. For the WHESOA th protectio canme from the "loopwet and the form of the recurrece

.4 wo doe*Iy -ele o the loop body; here these elemens depend entirely on the form of thbe procedure body. That is.
dos clue of imciilve ploewe calls is much lessmdaildimed tha the cme of WHILE-s-i-n1 is.

Glean my, putlcuiliao vector T, tim deiiton for the meaning of a recursive call can be "uinwound- untl the
:4~ ~ - 1 Masue nivimni f tha happen. And if it does not Weuli. beginining the process of unwinding may expose

tou fadt. Pdr -,~
amCO. One) 1(6nese) - (arm**)

ieaii m was same examlon tha ebowa above. However, solving the fwcuen equation in the general case isLawii -. c .... it wan for W.II 3 mns.



X0 8.3 Recursion

Imagine substtituting a guess for te meaning of odd into the recurrence equat ion. The parameter% pla, special
roles, litierally tha of parameters. in that the data-state transformation is different when they assume differeni value%
If we believe the comments on the program. the meaning of oddi tor parameter#; fidentifierO v and~ i if the fun-tion f

f - JIT. 0): ItU T. except that
UW = if T(v) is an odd digit. and

11(x = 14 if T(y) is an even digit).

(The implication is that if T7y) is not a digit at all. there is no second element of the pair in this set: that is. Ii
undefined for such T.) Substitutingf in the recurrence equation. the left side is;

T except that one has value (or -1
if TlaDne) is odd (or even).

On the right. the first two cases are in agreetment with this data state. For the third case, a digit value must be prn
to in wquence. and again substitutingfwe getwfor Odd(Reeu It. NextVel 1 411.

U except that Reau i t has value (or)
if U(Nsx t V 0) is odd (or even).

Buti U(Nsx tVa 0 is two characters in sequence pat T(One). and hence is even or odd in step. thr application (it th
header inverse function leaves the Reau i t value attached to ones in T. Thu% the left and right sides of the
recurrence equation agree for this f.

To prove thw a functon f is the one computed b-, a recurs-ive procedure call. it is necessary that / satisf% the
recurrence relation. however, this condition is not sufficient. Furthermore, when there are multiple recursions the
situation is even more complex. Consider the case in which procedure P callk procedure Q and vice versa. and P
does not call itself, but Q does call itself. Then in working out the meaning of a call on P the meaning of Q will
-1per and working this out in turn will yield a recufrence relation defining Qsr meaning in terms of itself and P*,

meaning. T1his illiustrats the genera situation: the result of analysis will be a syst of m simultaneoust equations in
m functions, one for each procedure involved in a recursive chain of calls. Substitution may simplify this system (for
example, substituting the P equation into the Q equation will eliminate P). but cannot solve it. It is evident that the
case of recursion is far more complex than the case of WHILE-statements,. and a result parallel to the WII

S verificastion iteorem. more difficult to obtain.

* *. Summay aMW onlsin

Using a subse of Pascal. a "program calculus'- ha% been descihed that asstigtn functional meaining ito rntelam,
For prorams containin no loops or recursive procedure calls, the application oif thist calculus ist mechanical 'in the
more conylicailed cases the menings must be guessied and then checked For recursive call, further work iist be
done to obta a simple checking procedure for the general case. To pnvse a prrm correct for a specificatioll ;n the
form of acceptable input-output pairs then becomes an elementary set-theoretic problem. the specification is a wet of
pairs a is the prorae tmenng; the program i% correct iu*t in case its meaning ist a stubfiet of the stpecificationt.



-V 31
t.4

I. Nir. P. et al.., Revsd repot on the a4rithic languageALGOL 6.CACM 6 (1963). pp. 1-17.

- 2. Knuth, D. E., Semantics of context-free languages, Math. Systems Theory 2 (1968), pp.127-146.

3. van Wijngmden, A. et al., Revised report on the algorithmic language ALGOL 68, Acta Inf. 5 (1975), pp.
1-236.

4. Wirth, N. and C. A. R. Hoe, A contribution to the development of ALGOL, CACM 9 (1966). pp. 413-432.

5. Weiger, P.. The Vienna definition language, Comp. Surveys (1972). pp. 6-63.

6. Stoy, J. E., Desotational Semantics: the Scot-Strachey Approach to Programming Language Theory, MIT Press,
1977.

7. Tement, R. D. Principes of Programming Languages, Prentice Hall, 1981.

8. Mfils, H. D., The new muh of computer programming. CACM 181(1975). pp. 43-48.

9. Linger, R. C., MiUs, H. D., and Witt, B. I., Structured Programming: Theory and Practice, Addison-Wesley.
1979.

10. Apt, K. R., Ten years o Hom's logic: a survey-put 1. TOPLAS 3(1981), pp. 431-483.

I1. Ardn. B. W., 7h Mickigan Algorithmic Decoder, University of Michigan Computing Center, Ann Arbor.

12. Show, C. J., JOVIAL-a pnolramming language for real-time command systems, in Annual Review in Automatic
Proal g, Vol. 3, Petnon Press, 1963, pp. 53-120.

13. Mils, H. D. at al., Compmter Programming, Allyn and Bacon, to appear.

14. Wiuth, N., The progamming language Pascal, Act Inf. 1 (1971), pp. 35-63.

IS. Scot, D. S. and Strachey, C. Toward a mathematical semantics for computer languages, Proc. Symposium on
Corwers and Awwana. (3. Fox, ed.), Polytechnic Institute of Brooklyn, 1971.

16. Taifg, A. M.. On computa" numbers, with an application to the entscheidungsproblem, Proc. London Math.
- Sek*y Ser. 2 42 (1936), pp. 230-265.

17. Khmm. S. C., 1wroduction to Mesamathematics, D. Van Nostrand, 1950.

- 18. Gerh. S. md Yeowitz, L., Obeervations of fallibility in applications of modern progrmmming methodologies.
IE.E Trm. Sowwe Engknering 11-2 (1976), pp. 195-207.

.4
V.,,:. - . , -. . .. . - - .,.2 .. . . . : . . : . : . : . .. , : , : , , . : . .: , :.



DIC


